Loading…
AI By the Bay has ended
View analytic
Monday, March 6 • 2:20pm - 2:50pm
AI at Stitch Fix

Sign up or log in to save this to your schedule and see who's attending!

Feedback form is now closed.
I'll review applied deep learning techniques we use at Stitch Fix to understand our client's personal style. Interpretable deep learning models are not only useful to scientists, but lead to better client experiences -- no one wants to interact with a black box virtual assistant. We do this in several ways. We've extended factorization machines with variational techniques, which allows us to learn quickly by finding the most polarizing examples. And by enforcing sparsity in our models, we have RNNs and CNNs that reveal how they function. The result is a dynamic machine that learns quickly and challenges our clients' styles.

Chris Moody came from a Physics background from Caltech and UCSC, and is now a scientist at Stitch Fix. He has an avid interest in NLP, has dabbled in deep learning, variational methods, and Gaussian Processes. He's contributed to the Chainer deep learning library (http://chainer.org/), the super-fast Barnes-Hut version of t-SNE to scikit-learn (http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) and written (one of the few!) sparse tensor factorization libraries in Python (https://github.com/stitchfix/ntflib). Lately he's been working on lda2vec (https://lda2vec.readthedocs.org/en/latest/) and variational forms of t-SNE. 

Speakers
avatar for Chris Moody

Chris Moody

Scientist, Stich Fix
Scientist, Stitch Fix


Monday March 6, 2017 2:20pm - 2:50pm
Pearl

Attendees (8)